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PREFACE

This report describes the development of candidate F-15 wing add-on damping
treatments by personnel in the Structural Dynamics Branch of the Structures Division,
Flight Dynamics Directorate, Wright Laboratory, Wright-Patterson Air Force Base,
Ohio for the support project 24010423, "Viscoelastic Damping for the F-15 Wing."

This report covers the damping treatment development work performed between
January 1989 and February 1991, including the laboratory vibration, corrosion, and
thermal aging tests conducted on the damping treatments. The project supporied the F-
15 Engineering Office (LFLEA), Warner-Robins Air Logistics Center, Robins Air
Force Base, Georgia. The authors wish to acknowledge the work contributed to this
effort by Messrs Kevin Harris, Michael Banford, Earl Rogers, and Michael Hart. Their
support led to the successful completion of this project.
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I. INTRODUCTION

The requirement for high performance fighter aircraft places tremendous
demands on the components and materials from which these aircraft are constructed.
Inherent with high performance are high vibration levels. One possible cause of large
vibratory loads is separated flow. Separated flow presents an unpredictable and
complex environment. Within this environment it is often impossible to estimate the
precise dynamic flow characteristics or ioading conditions that aircraft components
may experience during flight. If not properly accounted for in the design phase, large
vibratory loads can result in high cycle fatigue and a substantial reduction in the useful
service life of the component. Aircraft skins, in particular outboard wing skins, are
relatively light weight structures which are extremely susceptible to vibration response
induced by separated flow.

The F-15 upper-outer wing skin (UOWS) panel has experienced cracks resulting
from high cycle fatigue. The F-15 aircraft, shown in Figure 1, has sufficient thrust to
perform sustained, high load maneuvers. Consequent separated flow over the wing
panel contains high-level broad-band random pressure fluctuations and induces large
vibratory response in the UOWS panel and associated wing substructure. The resulting
elevated stresses over time cause high cycle fatigue cracks to form in the wing skin.
Historically, UOWS cracking dates to the late 1970s and early 1980s. At that time, the
cracks were considered to occur only over a small portion of the skin closest to the
wing tip. Later findings show that the entire UOWS is prone to cracking.

The UOWS was originally designed for a service life of 8000 hours.
Unfortunately, the initial service life realized was only 250 hours. Several
modifications were incorporated by the contractor in the early 1980s to improve the
fatigue life of the skin, including fortifying critical locations on the wing skin. The
modifications were initially thought to have resolved the fatigue cracking problem. In
reality these changes only increased the life of the skin to approximately 1250 hours.
The need still remained to increase the service life to the original design value of 8000
hours. The Wamer-Robins Air Logistics Center (W-R ALC) requested that Structural
Dynamics Branch of the Flight Dynamics Directorate study the UOWS high cycle
fatigue problem.

The purpose of this investigation was to design, fabricate, and verify candidate
add-on damping treatments for the F-15 UOWS that would alleviate the occurrence of
fatigue cracks caused by separated flow on the upper wing surface and increase the
UOWS service life to the desired 8000 hours. Two candidate damping treatments
resulted from the investigation and were recommended to W-R ALC for fleet retrofit.
One treatinent was a field installable external system, and the other was an internal
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depot installable systeni. Neither system required modifications to the existing wing
structure.

II. BACKGROUND

The F-15 UOWS is machined from a single block of 2024 aluminum and
consist of the skin, integrally machined "T" stiffeners, and chemically milled pockets
between the stiffeners. The thickness varies from location to location on the panel, but
assuming a constant thickness of 0.080" is sufficient for understanding the problem.
Figure 2 shows the major substructure for the left wing. The UOWS extends from rib
155 to rib 224, and from the front spar to the rear spar. There are intermediate ribs at
locations 172, 188, and 206. At rib 188, the front, main, and rear spars are at 10%,
45%, and 65% chord, respectively. Collectively, these members constitute the outer
wing torque box. The wing skin measures approximately 5 feet wide by 7 feet long
measuring along rib 188 and the main spar, respectively. Inboard of rib 155 the wing
is "wet," that is, the volume is used for fuel storage. The outer torque box is "dry."
Blind threaded, flush fasteners are used to attach the skin to the rib and spar
substructure. A scrapped right-hand UOWS is shown in Figure 3. Visible in Figure 3
are the integral stiffeners and their runouts, spar and rib fastener holes, and various
panel access holes. Stiffeners are numbered consecutively starting at the UOWS
leading edge. The stiffeners are not clipped to the ribs but are allowed to move freely
within the rib notch. The cracks develop in the rib fastener holes adjacent to the
stiffeners. Predominantly, the cracks initiate either perpendicular to the ribs or parallel
to the stiffeners. A close-up of a damaged UOWS, showing the crack locations, is
presented in Figure 4. Close inspection of Figure 4 reveals the extra holes in the skin
used for fastening the external stainless steel straps on top of rib lines 188 and 206.
The external straps, detailed in Figure 5, were an interim fix to extend the service life
of cracked wing skins; this fix was abandoned several years ago. Figures 6 and 7
show close-ups of the cracks in the scrapped UOWS occurring in rib 206 fastener
holes. Extra holes for the external straps are also visible. Based on the crack patterns
and the unclipped stiffener design, it was concluded that the skin cracks were most
likely induced by stiffener rotation. The flow induced vibration also results in damage
to the outer torque box substructure. A photograph of a cracked rib is shown in Figure
8. Figure 9 gives a convenient shorthand designation for the spar-rib bays which will
be used throughout the remainder of this report to aid the reader in locating specific
portions of the UOWS.

The UOWS cracks are caused by high cycle fatigue. Damage accumulates due
to resonant vibration of local skin/stiffener modes excited by external oscillatory
pressure resulting from separated flow. The excitation occurs during high load factor
maneuvers. The capability of the F-15 to sustain these maneuvers causes the excitation
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to occur for sufficiently long periods of time to result in damage. Figure 10 is a photo
of smoke streamlines for a typical airfoil at 12° angle-of-attack (AOA) and shows
separated air flow. Other investigations concerning the aerodynamic characteristics of
the F-15 suggest that 12° angle-of-attack provides the most severe disturbances and
consequently the most damage.

The locations where UOWS fatigue cracks were observed evolved during the
course of this investigation. Initially, the concern was for the web of stiffener 4 in bay
L1 (see Figure 9) and over rib 206 between bays L1 and L2. Next, it was observed
that cracks also occurred over rib 188 between bays L2 and L3. Finally, it was learned
that cracks occur over ribs 188 and 206 between the main and rear spars. Ribs 188
and 206 themselves crack, but were not specifically addressed in this study. The
numerous access holes in bays L4 and R4 result in a significantly heavier structure and
made this area less susceptible to fatigue cracking. Thus, with the exception of bays
L4 and R4, high cycle fatigue cracks were observed over the entire UOWS panel.

OI. MODAL TESTS

To ascertain the cause of the problem, modal tests were conducted on a full-
scale F-15A wing in the laboratory. The modal tests were done in three phases. The
first test used laser video holography, and the second and third phases used more
traditional multi-accelerometer surveys.

A. LASER VIDEO HOLOGRAPHY

Laser video holography shows mode shapes right on the structure as it is being
excited at discrete resonant frequencies. This phase of the test was performed by Gene
Maddux of the Structural Dynamics Branch. The video holography equipment is
shown in Figure 11. The equipment consisted of a Retra 1000 holography unit, a
variable phase digital synthesizer, a power amplifier, a freeze frame unit, and a video
monitor.

For this test, the wing was placed vertically against a wall of the Branch’s Large
Acoustics Chamber as shown in Figure 12. Acoustic foam was inserted between the
leading edge and the floor to dampen any noise transmitted from the floor. The wing
was excited from the back by a Delta Dynamics 10 Ib electrodynamic shaker. A
suction cup was used to attach the shaker to the wing; see Figure 13. The shaker was
placed where stiffener 6 and rib 224 of the wing intersect. Highly reflective tape was
attached to the wing in order to show the mode shapes. The mode shapes were




recorded using a video cassette recorder. Both sine sweeps and sine dwells were used
to extract the modes.

Numerous wing skin modes were found. They were found to be closely spaced in
terms of frequencies; i.e. slight changes in the frequency of the excitation altered the
mode shape, although the shapes looked similar to mode shapes at nearby frequencies.
Figures 14-21 shows the UOWS mode shapes for resonant frequencies between 200
and 850 Hz. The fringe patterns shown in these figures resemble a contour map of the
deformed wing skin. Each successive fringe represents an additional displacement of
one half the wavelength of the laser light or about 12.46 microinches for the HeNe
laser used. This displacement is relative to the underformed UOWS and therefore
represents a peak displacement.

B. MODAL TEST OF THE SKIN SURFACE

The second phase of the modal test of the F-15 UOWS was a more
conventional modal test employing roving accelerometers. For this test the wing was
laid horizontally in the Branch’s Large Acoustics Chamber. One end was supported by
the massive fuselage attachment structure while the wing tip was supported by a
wooden 2"x 4" cribbing such that the area of interest was relatively horizontal and
approximately two feet off the ground. We thought that the boundary conditions
represented by this configuration, although hardly realistic, were inconsequential to the
results, since we were only interested in the panel and stiffener modes of the UOWS.

Twelve PCB Structcel accelerometers were used to measure the response of the
UOWS when exposed to 0-1000 Hz random noise excitation. The wing was excited
using a Delta Dynamics 10 1b shaker. A grid consisting of 170 nodes was laid out to
map the wing skin mode shapes. Figures 22 and 23 show the location of the grid
points on the wing. Great care was used in spreading out the accelerometers on the
structure to avoid mass loading. Accelerometers were moved 15 times to completely
map the entire grid. A PCB 208A03 force gage measured the force input to the
structure.

A Honeywell 101 magnetic tape recorder was used to record the acceleration
response of the wing skin. Twelve tracks of the tape were used for the accelerometers,
one track for the force gage, another for the time code and another for the voice. The
runs were recorded at 7.5 ips (inches per second).

Before the data were recorded, the transducer signals were ccrditioned.
Transducer signals were passed through Precision Devices model 744PB-3 anti-aliasing
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filters with their roll-off frequency set at 1000 Hz. Next, the signals were passed
through Intech auto gain ranging amplifiers to make sure there was good dynamic
range before recording. Finally, before recording, each channel was examined with an
oscilloscope, again to make sure of the quality of the data.

The analog data recorded on magnetic tape were digitized and analyzed by the
Analysis Group of the Structural Dynamics Branch. The Branch’s Array Vax
computer and analysis software developed in-house were used to perform discrete Fast
Fourier Transforms on the digitized time histories. The resulting transfer functions
were stored in Universal file format, which the Structural Dynamics Research
Corporation (SDRC) program TDAS (Test Data Analysis System) readily converted to
Function ADFs (Associated Data Files). TDAS used the ADFs to extract the resonant
frequencies, mode shapes, modal damping, m~dal assurance criteria, etc.

C. MODAL TEST ON THE STIFFENERS

Once the modal test on the skin surface was completed, the upper skin was
removed and instrumented with 27 Vibrametrics M1000-8A accelerometers. For this
test the accelerometers were placed on the stiffeners. Figures 24 and 25 show the
locations of the accelerometers on the stiffeners. The accelerometers were attached to
the stiffeners with 5 minute epoxy. Rubber boots were placed over the accelerometers
to insulate them, thus reducing the effects of temperature transients. With the change
of accelerometers, the data acquisition system had to be changed; however, the Delta
Dynamics 1016 shaker and the PCB 208A03 force gage were again employed.

The set-up using the PCB Structcels were not appropriate for the Vibrametrics
M1000-8A because the latter required 15V DC excitation. Therefore, the data
acquisition system available in the Control Room of the Branch’s Acoustics Facility
was used. This system used diodes to power the accelerometers. Like the previous
arrangement, the transducer signals were passed through Precision Devices model
744PB-3 anti-aliasing filters set at 1000 Hz cut-off frequency, and through Intech auto
gain ranging amplifiers. The transducer output signals, along with the time code and
voice, were stored using the Honeywell 96 FM analog magnetic tape recorder. Once
again, the Analysis Group digitized and analyzed the data. TDAS was also used to
obtain the modal parameters.

D. RESULTS OF MODAL TESTING

Mode shapes and other modal parameters were obtained from the transfer
functions gathered during the modal surveys on the skin and stiffeners. Figures 26 and
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27 contain modal indicator functions for the skin test data and the stiffener test data,
respectively. The modal indicator function represents the relative strength of each
mode plotted on a logarithmic scale. Figures 26 and 27 showed that a number of
resonant frequencies were shared by the skin and stiffeners. This should not come as a
surprise, because the skin and stiffeners are one structure. Mode shapes were
generated of the skin by itself, the stiffeners by themselves, and the skin and stiffeners
combined. Figures 28 through 34 show some of the skin and stiffener modes. The
strong correlation between the stiffener and the skin motion suggested a damping
design applied to the skin and stiffeners may hold promise of attenuating the vibration
of the UOWS enough to yield a substantial increase in the service life of the wing
skin. The damping treatments developed are discussed in the next section.

IV. DAMPING TREATMENTS

This study investigated the performance of 13 different candidate add-on
damping treatment configurations under laboratory conditions. For brevity, only the |
"1980 Damping Treatment" and the two new damping treatments which were |
recommended to W-R ALC are discussed in this section. A detailed description of the
additional configurations tested is given in Appendix A.

Past damping experience suggested that a constrained-layer damping treatment
would offer the most viable, cost effective solution. A constrained-layer damping
system consists of a layer of viscoelastic material (VEM) which is constrained by a
metal layer. Often this type of damping system will be constructed of mul::pie
constrained layers to achieve the desired level of damping. Whenever the structure
undergoes bending, the metal layer will constrain the viscoelastic material, resulting in
shear deformation of the VEM. Energy is dissipated due to this shear deformation.

An important part of designing a damping treatment is determining the
environmental condition to which the treatment will be exposed and ensuring that the
selected treatment will withstand and perform properly under these conditions. Critical
environmental considerations include the operational temperature range for which
damping is desired, the effects of the damping treatment on corrosion of the structure,
and the effects of thermal aging on the performance of the damping treatment. Recent
laboratory corrosion testing showed no degradation in corrosion resistance caused by
the application of the recommended damping treatments. The corrosion test panels
were exposed to a standard 30-day humidity corrosion environment in the laboratory
consisting of 120° F, 98% relative humidity, and salt spray. The addition of the
damping treatments had no effect on corrosion, primarily because the UOWS paint was
not disturbed during installation. Extensive service experience with similar damping
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treatments has not revealed any corrosion problems. For example, the "1980 Damping
Treatment” has flown externally on approximately 300 aircraft for 10 years with no
adverse effects on corrosion. Although the requirements used to develop the thermal
aging tests were judged to be excessive, satisfactory thermal aging characteristics were
demonstrated in the laboratory for all materials used in the new damping treatments.
The temperature exposure of 8 hours at 340° F plus 48 hours at 270° F was intended to
be a conservative design condition for the 8000 hour life; however, these exposure
levels are believed to be more severe than necessary. Thousands of hours of F-111
service data establish that the stagnation temperature exceeds 125° F less than 1% of
the time. Laboratory tests confirmed that thermal aging caused the damping material
to stiffen slightly, which tended to increase damping treatment effectiveness. An
additional issue of practicality is the ability to inspect the UOWS for structural
integrity with the damping treatment installed. The damping treatment configurations
used in no instance covered up fasteners or locations where the cracks initiate.
Therefore, the damping treatments will not hinder inspection of the UOWS either
visually or radiographically and the treatments also will not impact removal or
installation of the UOWS or other maintenance functions. The details of the corrosion
and thermal aging tests are deferred to Appendices C and D. A discussion on the
selection of the damping treatment design temperature range follows.

A. DAMPING TREATMENT SELECTION

A plot of Mach number versus altitude is presented in Figure 35 for the F-15
aircraft. Figure 36 is extracted from the F-15 tech orders and substantiates the load
factor curves of Figure 35. Included on the plot in Figure 35 are standard day constant
value curves for the following parameters: dynamic pressure (q), stagnation
temperature, and maneuver load factor. The load factor is for an F-15 with a gross
weight of 42,000 pounds flying at a 12° AOA. The equilibrium temperature for the
wing skin and the installed damping treatment will fall between the stagnation
temperature and the ambient temperature. The large dash marks in Figure 35 indicate
planned data gathering flight conditions. Because the ratio of oscillatory pressure to
dynamic pressure tends to be a constant in the subsonic flight regime, the oscillatory
pressure (thus the cumulative damage) increases as Mach 1.0 at sea level is approached
from the upper left on the graph. The structural limit of the F-15 is approximately 8g.
Based on this, a temperature range from 50° F to 75° F was selected for the damping
design. No cumulative damage was expected below 0° F or above 125° F.

A previous attempt by MCAIR to correct the UOWS fatigue cracking included
the application of a multiple constrained-layer damping treatment referred to as the
"1980 Damping Treatment.” The treatment was applied externally over bay L1 of the
skin (see Figure 9) because at the time, the fatigue cracks were considered to occur
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only in this outer spar-rib bay. It consisted of 3 constrained layers, each containing a
0.002" layer of ISD-112 VEM and a 0.005" layer of aluminum. Figure 37 illustrates
the "1980 Damping Treatment" which for this investigation was denoted Test
Configuration 1 (TC1). Figure 38 is a photo of the "1980 Damping Treatment"
installed on an F-15 wing. Note the ramp of sealant around the circumference of the
treatment to protect the edge from the air flow and prevent moisture from getting
under the treatment. After paint is applied to the top constraining layer and the
sealant, the damping treatment is barely noticeable. The "1980 Damping Treatment"
was installed and flown on numerous operational F-15 aircraft but it proved to be
unsuccessful in eliminating the UOWS fatigue cracks.

As previously mentioned, the Flight Dynamics Directorate developed two new
damping treatments which were recommended to W-R ALC for F-15 fleet retrofit.
The treatments consisted of an externally applied, field installable system and an
internally applied, depot installable system. Figure 39 shows the recommended
external multiple (4) constrained layer configuration. Two different constrained layers
were used in the external treatment design. One consisted of a 0.002" layer of
ISD-112 VEM constrained by a 0.005" layer of aluminum and the other was made of a
0.002" layer of ISD-113 VEM also constrained by a 0.005" layer of aluminum. Two
- each of these different constrained layers were used to build up the total of four
constrained layers in the external treatment design. The use of two VEMs broadened
the effective temperature range relative to the "1980 Damping Treatment." The six
outer most spar-rib bays were covered (R1, R2, R3, L1, L2, and L3) by the external
treatment. Figure 40 is a photo of the external treatment installed on an F-15 wing.

B. RECOMMENDED DESIGN

The recommended internal treatment design is summarized in Figure 41.
Starting at the wing skin, there was a 0.004" layer of pressure sensitive adhesive (PSA)
which performed as a VEM. Next there was an 0.080" stand-off layer of syntactic
foam configured to maintain high shear stiffness and low flexural stiffness. This was
achieved by cutting a checker board pattern into the syntactic foam. Finally, three
constrained layers of damping material were placed on top of the stand-off layer. The
first constrained layer (from the bottom) consisted of 0.004" of VEM constrained by
0.005" of aluminum. The other two constrained layers each consisted of 0.002" of
VEM constrained by 0.005" of aluminum. For all layers the Hueston Industries F-440
VEM was used. The internal damping treatment was applied in the chemically-milled
pockets between the integral stiffeners for all 8 spar-rib bays shown in Figure 9.
Additionally, there were viscoelastic links (VELs) placed between the caps of the
integral stiffeners and the notches in the ribs. The VELs were located in all rib notch
locations. The VEL material was slightly tacky at room temperature. A VEL
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thickness of 0.50" was used to provide an interference fit. The purpose of the VEL
was to provide a link (having both stiffness and damping) from the stiffener cap to
ground (rib notch), thereby reducing stiffener rotation. Figure 42 shows the stand-off
damping treatment applied to the internal surface of the wing skin. Figures 43 and 44
shows the VELs located in the rib notches.

C. INSTALLATION

The installation of the damping treatments was simple and straight forward. A
description of the external treatment installation follows. First the UOWS was cleaned
with solvent to remove all oil and dirt. Next, the external damping treatment was pre-
cut to fit between the fastener rows for each spar-rib bay. The treatment was sized to
ensure that access to the fasteners was not impaired. Next, a small amount of split
peel ply or release paper was removed from the bottom of the damping treatment,
exposing the first layer of VEM. The damping treatment was then carefully centered
onto the appropriate spar-rib bay. Figure 45 illustrates this step. Finally, the
procedure was to gradually remove the release paper from under the damping treatment
while simultaneously adhering the treatment. Special care was necessary to minimize
entrapped air bubbles. A small, flat plastic scraper was rubbed over the surface of the
external treatment as it was applied to squeeze out as much air as possible. This step
is illustrated in Figure 46. A nice feature of the external damping treatment was that
small amounts of compound curvature could be accommodated without adversely
affecting the quality of the application.

The internal stand-off treatment was applied in a similar manner except
additional effort was required to avoid damaging the brittle stand-off layer. The pieces
of internal damping treatment were much smaller than the external damping pieces and
therefore air entrapment was not a problem. Hand pressure was sufficient to apply the
internal treatment so the plastic scraper was not used. If additional pressure was
deemed necessary, a small rubber roller could be used when applying the internal
treatment. The VELSs were provided with release paper on the two surfaces which
were to adhere to the skin stiffener and the rib notch. During installation, the release
paper on the rib notch side was removed and the VEL was positioned in the rib notch.
Just before installing the skin, the second release paper was removed. The thickness of
the VEL was such that an interference fit resulted; however, the force required to
install the UOWS tightly to the substructure was nominal and easily provided by
advancing the fasteners.




V. FLIGHT DATA

Flight data were gathered to obtain UOWS response data during high load factor
maneuvers and to assess the effectiveness of the damping systems. These test were
conducted by McDonnell Aircraft Corporation, St. Louis MO. (MCAIR), at the request
and sponsorship of W-R ALC. Numerous other investigations have provided some
flight data, along with data reduction and analysis. These investigations showed that
obtaining accurate UOWS panel response data was highly dependent on whether the
panel had been installed properly and the instrumentation used effectively.
Inconsistencies in these two areas, among others, can easily lead the investigator to
erroneous results. In one previous investigation, which had been intended to serve as
the baseline response, a build-up of sealant (for the purpose of protecting
instrumentation) on top of stiffener #4 inadvertently contacted the base of the rib notch
of rib 188 and very significantly affected the results. In another case, sealant was
placed between the UOWS and all substructure ribs and spars; this reduced response
but also made removal of the UOWS extremely difficult. At times the strain gages
used were either not located closely enough to the locations where failures were
occurring, or were oriented in the wrong directions to adequately measure the
damaging strain levels. Therefore, care must be exercised in assessing relevance and
interpreting results from other studies.

The flight test data collected for this investigation included the baseline response
of the F-15 UOWS as well as the UOWS response with various candidate damping
treatment configurations. Strain gages placed on internal and external surfaces of the
panel were used to record the bulk of the response data. In some cases internal
accelerometers were also used. Figure 47 shows the location of the strain gages
mounted adjacent to stiffener #4 at rib 188. One was positioned between the two rows
of rib 188 fastener holes and the other was located just inboard of these fastener holes.

The location and orientation of these strain gages were such that the strains inducing
the fatigue cracks should be measured. Historically, many cracks have been
discovered along stiffener #4. Based on past analyses, it was observed that the
response data obtained at the intersection of stiffener #4 and rib 188 could be used to
represent the response over the remaining panel. Thus, the analysis performed
centered on the UOWS response measurements taken at this location.

A plot of angle-of-attack (AOA) versus dynamic pressure is given in Figure 48
for typical flight conditions for which high load factor maneuver data was gathered.
The range of dynamic pressure, q of 350 psf to 500 psf, for the 12° AOA shown in
this plot illustrates the difficulty, if not impossibility, of duplicating the service
conditions for which damage is induced. The power spectral density (PSD), shown in
Figure 49, was typical of the UOWS response at the strain gage locations shown in
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Figure 47 for an undamped panel. The flight conditions for this PSD were: 11° AOA,
5.9 g load factor, 0.80 Mach, 20,000 feet altitude, and 424 psf dynamic pressure.
Figure 49 shows high strain levels occurred in the 300 to 400 hertz (Hz) band. It was
obvious that this peak results in the most significant contribution to cumulative high
cycle fatigue crack damage. '

Several damping treatment configurations were flight tested. The external and
internal treatments, which were recommended to W-R ALC for F-15 retrofit, were
included in the flight tested damping treatments. Unfortunately detailed data is not yet
available and will not be available before printing of this report; thus no specific flight
test results can be presented. The preliminary flight test results received from MCAIR
are very promising and appear to significantly improve the UOWS fatigue life.
MCAIR will release the final report to W-R ALC near the end of calendar year 1991.

VI. DISCUSSION

A. LIFE EXTENSION

A comparison between the frequency response of the baseline UOWS and the
UOWS with the external damping treatment installed is presented in Figure 50. The
acceleration Frequency Response Functions (FRFs) were integrated twice to obtain the
compliance (displacement) FRFs; the compliance FRFs were assumed to be
proportional to strain. Figure 51 makes a similar comparison for the internal damping
configuration. Notice the dramatic, beneficial reduction in response due to the internal
treatment. The comparisons in this report were made on the basis of RMS stress rather
than by considering peak values. Figure 52 presents the equation used to calculate the
life extension factor. The ratio of the damped to the baseline response was raised to
the proper exponent to give the life extension factor (ie, ratio of lifetimes). The RMS
of the compliance FRF between 300 and 400 Hz was the basis of the calculation. The
reader is referred to Appendix B for details.

Calculations made in this manner reveal that the UOWS with the "1980
Damping Treatment" (TC1) will last 4 times as long as the baseline UOWS (bare
UOWS); thus the life extension factor is 4. The life of the baseline UOWS is
approximately 1250 hours; therefore, the projected life with the "1980 Damping
Treatment” is 5000 hours. Obviously, this is an estimate; however, it does provide a
measure of performance for the damping treatments. Similar estimates gave life
extension factors for the new recommended external and internal treatments of S and
34, respectively. The internal treatment is considered the primary configuzation for
resolving the UOWS high cycle fatigue cracking. This is because of the dramatic
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reduction in response achieved with it installed. Its large life extension factor should
offset a variety of uncertainties not accounted for by this investigation, such as precise
temperature at which damage accumulates, the fact that RMS stresses were used
instead of peak values, and potential changes in future operational usage.

B. COST SAVINGS

The maintenance cost savings from retrofitting the F-15 fleet with the internal
damping treatment assume that installation of the damping will preclude only one
UOWS rework for all aircraft in the fleet. This assumption should result in a
conservative estimate. All costs are in FY91 dollars.

The labor cost to rework UOWS on a single aircraft is approximately $0.1 M.
Multiplying by 650 to account for reworking all 650 aircraft in the fleet results in a
labor savings of over $65 M. The materials to rework a single aircraft cost $27 K.
For 650 aircraft this figure becomes $17.5 M. To install the intemal damping
treatment will require installation and removal of the wing skin at a cost of $7.7 K per
aircraft, or $5 M for the fleet. The cost of the damping materials themselves will be
approximately $2.5M for all 650 aircraft. Adding the UOWS rework labor and
materials savings of $65 M and $17.5 M respectively and subtracting the cost of labor
and materials for installing the damping treatments results in a $75 M cost savings
overall.

VII. CONCLUSIONS

The Fight Dynamics Directorate, at the request and sponsorship of Wamner-
Robins Air Logistic Center, tested 13 candidate add-on damping treatments for the F-
15 UOWS. Of those tested, two damping treatments were recommended for F-15 fleet
retrofit. One treatment was an externally applied constrained-layer treatment and the
other was an internally applied stand-off treatment with viscoelastic links in the rib
notches. The extemal and internal treatments resulted in life extension factors of 5 and
34, respectively. The damping treatments were thermally aged and corrosion tested; no
adverse effects were noted. Three hundred F-15 aircraft have accumulated ten years of
service experience with the "1980 Damping Treatment" and to the authors’ knowledge
there have been no reports of concern or adverse effects associated with add-on
damping treatments. At this time, there is no evidence to indicate that the
recommended damping treatments should not be used to alleviate the UOWS fatigue
cracking. It is projected that retrofit of the F-15 fleet with UOWS containing the
internal treatment will result in a net savings of $75M in maintenance and repair costs
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over the next 25 years.‘ The recommended damping treatments are fully qualified for
F-15 fleet retrofit and represent a viable, cost effective solution which will substantially
improve the F-15 UOWS service life.

vil. RECOMMENDATIONS

It is recommended that the external damping treatment be retrofitted to the
entire F-15 fleet. It can be installed in the field, extending the life of the UOWS and
minimizing accumulated damage until the aircraft is scheduled for depot maintenance.
It is recommended that the internal damping treatment be installed during depot
maintenance to provide the maximum protection to the UOWS and adjoining structure.
The adjoining structure (ribs) would experience a small reduction in vibratory loads
and would therefore also benefit from the application of the damping treatment. The
large life extension factor of the internal treatment would also cover a variety of
uncertainties, such as the temperature at which damage accumulates and possible
changes in future operational usage.
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APPENDIX A: DAMPING TREATMENT CONFIGURATIONS

This appendix provides information on the 13 damping treatment configurations
which were tested. The 4 basic lay-ups used in this investigation are presented in
Figure Al. Additional details on the lay-ups are provided in Figure A2. A
comparison of the various candidate add-on damping treatment test configurations (TC)
along with the recommended internal and external configurations is shown in Figure
A3. Figures A4 through A13 give the test configurations considered during this
investigation, whether the damping treatments were internally or externally applied,
and where on the UOWS the treatments were located (i.e., spar-rib bays to which
damping treatments were applied). TCl1 is the "1980 Damping Treatment" and was
described in Figure 37 of this report. The recommended external and internal
treatments were also previously described in Figures 39 through 44. TC7 was the
same treatment as TC6 except each bay has only the middle 50% of area covered.
TC8 was the same as TC6 with the addition of the VELs in all stiffener-rib notches.
Figure A12 describes TC10 which has the appearance of a flow fence. A photograph
of these damped flow fences is shown in Figure A14. Figure A13 shows TC11 which
has the same lay-up as TC2 with the addition of "damping strips" as shown; bays L1,
L2 and L3 are covered with the "damping strips”. Figure A1S5 is a table of test results
for the 300 to 400 Hz frequency band. Column 1 is the test configuration number.
Column 2 lists the accelerometer number from Figure 24. Column 3 is the ratio of the
UOWS RMS response with the damping applied to the baseline UOWS RMS
response. Column 5 is the results of the calculations using Figure 52 and Appendix B.
Column 6 is the average life extension (LE); this number is considered representative
of that expected in service. Figure A16 is a bar graph comparing the life extension
factors of the various test configurations. Although the damped laminar flow fence
performed well, it was not considered a viable solution because of the potential adverse
effects on the wing flow field.

APPENDIX B: METHODOLOGY FOR CALCULATION OF LIFE EXTENSIQN

The Palmgren-Miner cumnulative fatigue damage law is the basis for life
extension calculations. It has been observed that an adequate approximation is that all
fatigue curves in the region of interest have the same slope regardless of stress
concentration factors or average stress. The S-N curves are considered to be straight
lines on log-log scales. This situation is presented in Figures Bl and B2. When the
alternating (or RMS) stress is reduced from S, to S,y,, the life is extended from N, to
Nioy: The normalized equation is presented in Figure B2. The rule of thumb used
here is that reducing alternating (or RMS) stress by a factor of 2 results in a factor of
10 for life extension. This is plotted in Figure B1 and the equation is presented in

14




Figure B2. This is a conservative approach. The normalized approach is valid for
add-on damping treatment because neither stress concentration nor average stress is
changed. It remains to calculate the ratio of damped to undamped (baseline) RMS
stress (i.e., normalized).

For a random process of interest here the governing equation is

Sy (£) =|H,, (F£) |2S,(£) Egqn-B 1
where
o(t) is stress - psi
p(t) is pressure - psi
S, is PSD - (psi)¥Hz
H,, is FRF - psi/psi

. N2

S, is PSD - (psi)’/Hz
The stress is considered to be representative of a crack location in service. The
pressure is from the representative flight condition causing all of the damage. Over the

frequency range of interest, the PSD level is a constant

Sp=P, i £ <L<f), ' Egn-B 2
The area under the PSD curve is the square of the RMS
. n La ,
0% o, n‘:n"'f Sq (£) df=Pof |Hyp (7 £) |2dE Eqn - B 3
£ £

and the RMS is proportional to the integral
f . 1/2
Orums, £1-£h -[ffx |Hyp (T £) lzdf} Egn - B 4

If adequate flight data are available, the above equations would be used to calculate a
ratio for damped and baseline conditions.
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For the laboratofy the governing equation is

Sg(£) =|Hyp(F£) |2Se(£) Eqgn-B 5
where .
g(t) is acceleration - g
F(t) is shaker force - Ib
S, is PSD - g/Hz
H; is FRF - g/lb
Sp is PSD - Ib*/Hz

For the present purposes, conceptually there is no difference between flight pressure
and laboratory shaker force

F(t)= A p(t) Eqn-B 6

The units may be changed

H,,~386H_, (in/sec?/1b) . Eqn-B 7

Again conceptually, the stress is a linear function of displacement

S (£) = Kyq Syql£) Eqn-B 8
where

d(t) is displacement - inch

S, is PSD - (in 3/Hz

The displacement and acceleraticn FRFs are related by

1 Hg Eqn-B9

dr® (2m)2 £2

The following equation is useful
Sq(£) =|Hyp(F£) |2S,(£) Eqn - B 10
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where
Hg is a FRF. (in/Ib)

Substituting Eqn B9 into B10 yields

|Hyp (F£) |2

S, (f) =
alf) (2m) 4 £

Spl£)

Using Eqn B8 leads to

KodIHaF(jf) Iz

S (f)=
o (1) (2m)4r4

Se(£)

Over the frequency range of interest, the force PSD is a constant
Sp = F, ; £,<f<f,

The square of the RMS is given by the integral

K 4F, £y |Hpe(FE) |2
Ll 4
(2m) 4 ffx £ d

0% o, £1-n =
The RMS is proportional to the integral

H 'f 2 1/2
Oracs. £1-21 [ :" ﬁg_ﬂ_df]
2

Eqn - B 11

Eqn - B 12

Egn - B 13

Eqn - B 14

Egn - B 15

which is used for calculating the ratios. The complex-valued FRF is calculated from a

numerical approximation of

Sgr(IF)

Hor(IE) = —57F

where S is cross-PSD.  (g-1b/Hz)
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'APPENDIX C: CORROSION TESTS

This appendix presents the results of the corrosion tests performed during this
investigation. Figure C1 presents sketches of the lay-ups 112 and S/3. The edge
sealant of the "1980 Damping Treatment" is also indicated. Any polymer will absorb
moisture. The VEM used will absorb a maximum of 5%, and the syntactic foam a
maximum of 0.5%. In all cases, the paint which provides the basic corrosion
protection to the metal is not disturbed. Good adhesion of the damping treatment
requires a chemically clean, active surface. An approved solvent for grease and dirt
should be used. Also, extremely light mechanical abrading may be performed. In any
event, the basic integrity of the paint should not be disturbed. Note that the
predominant mode for moisture entry is the edge, because the aluminum is
impermeable to moisture. Other possibilities are moisture entering the grooves of the
stand-off foam or through punctures in the aluminum. For moisture to be present at
the paint surface, it must be absorbed through the sealant and pressure sensitive
adhesive (VEM) for lay-up 112 and 112/113 and through the pressure sensitive
adhesive (VEM) only for lay-up S/3 (cracks may occur in the stand-off foam). Thus,
the protection of the VEM in all cases is added to that of the paint. Several test panels
were exposed to a standard 30 day humidity corrosion environment in the laboratory
consisting of 120° F, 98% relative humidity (RH), and salt spray. Figure C2 is a photo
of a bare (painted but without damping treatment) test panel after exposure; no
corrosion is evident. Figures C3 and C4 show the "1980 Damping Treatment"
(TC1/lay-up 112) with the edge sealant. Some corrosion is evident in Figures C3 and
C4 along one edge of the unprotected aluminum constraining layer next to the edge
sealant; none is evident on the basic painted panel. Figure CS is the "1980 Damping
Treatment” without edge sealant. The same panel with one half of the damping
treatment removed is shown in Figure C6. No corrosion is evident in either
photograph. It is important to note that there has not been any reported corrosion
problems during the "1980 Damping Treatment’s" 10 years of service on 300 F-15
aircraft. Figures C7 and C8 are the external damping treatment lay-up 112/113 without
edge sealant. Lay-up 112/113 with edge sealant is presented in Figures C9 and C10.
A small amount of corrosion is evident on the top, unprotected constraining-layer. The
stand-off damping treatment (lay-up S3) is shown in Figures C11 and C12 without
edge sealant and in Figures C13 through C15 with edge sealant; again only small
amounts of corrosion are evident on the unprotected constraining-layer. Figures C16
and C17 show the test panel with the viscoelastic link (VEL) applied. No corrosion
was observed. No test panels (Figures C2 through C17) showed any evidence
whatsoever of corrosion of the painted parent panel due to the application of one of the
candidate damping treatments. There was some corrosion of the bare (unpainted)
outermost aluminum constraining layer; however, no corrosion of the parent panel was
encountered under laboratory testing. This fact strongly suggest that no corrosion
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problems will be present with the painted UOWS or ribs. In view of the fact that the
external damping treatment would be painted, and the internal damping treatment
would not be exposed directly to the environment, it is highly unlikely that there will
be corrosion problems with the aluminum constraining layers. Service experience with
the very similar "1980 Damping Treatment" system has been completely satisfactory.
Simply stated, corrosion is not believed to be a problem.

APPENDIX D: THERMAL AGING TESTS

This appendix presents the result of the thermal aging tests performed on the
candidate damping treatments. Figure D1 is a photo of a "1980 Damping Treatment"
(lay-up 112) which was removed from an actual wing previously in service. The
damping treatment was peeled back (failing cohesively) to reveal the original painted
surface of the UOWS. The environment was normal service only. There was no
evidence of discoloration or embrittlement whatsoever. A specimen containing the
"1980 Damping Treatment" and exposed to 340° F in air for 8 hours is shown in
Figure D2. When the aluminum constraining layer was peeled back, VEM remained
on both the aluminum constraining layer and on the base panel. This is indicative of a
cohesive failure which is the desired failure mode. Cohesive failure indicates that
thermal aging has not caused debonding of the damping treatment from the parent
material. In Figure D2, there are regions where discoloration of the VEM is evident,
along with regions (approximately 50% of the area) which experienced no noticeable
discoloration. This pattern suggested that air had reached the discolored areas and had
not reached the unaffected areas. Possibly the air was entrapped when the foil was
laid down, or perhaps a slight ridge or buckle of foil was present.

To determine the degradation of the VEM due to thermal aging, cantilever beam
test were performed. Figure D3 is a sketch of the cantilever beam modal damping test
arrangement. The test approach used to measure the damping system properties
followed the standard ASTM E-756-83 procedures. The tests measured damping
properties for the second, third, and fourth modes. Comparisons were made between
the similar test performed between baseline damping treatments and thermally aged
damping treatments. Figure D4 is a plot of modal damping versus temperature for the
"1980 Damping Treatment” before and after exposure of the specimen to 340° F for 7
hours and 270° F for 48 hours all in air. Modal damping is seen to decrease by only a
small amount over the 50° F to 75° F temperature range of interest. A plot of modal
damping versus temperature for the stand-off damping treatment (lay-up S/3) before
and after similar thermal exposure is given in Figure DS. Again, modal damping is
seen to decrease by only a small amount over the temperature range of interest. The
effects of thermal aging on the viscoelastic links (VEL) was determined by measuring
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changes in the materials dynamic shear modulus. Plots of dynamic shear modulus and
material loss factor versus temperature for the VEL material before and after thermal
exposure are given in Figure D6. From the plots it can be seen that peak loss factor
retains the same value but is shifted to a higher temperature due to thermal aging;
dynamic shear modulus is increased approximately 20%. The effect of these changes
is judged to be insignificant. Percent elongation to failure of the VELs was recorded
using an over-lap shear test. Percent elongation to failure was 1000% and 150%
before and after thermal ageing, respectively. Although the percent elongation to
failure decreased significantly after thermal aging, the resulting value allowed more
than adequate extension to withstand the environment. During these tests strength of
the VEL material was observed to increase, and failures were cohesive, indicating good
bond strength. '
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Figure
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F-15 Load Factor Curves

Figure 36.
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TEST 300 HZ TO 400 HZ FREQUENCY BAND
N e w [ smoGm | st
RATIO REDUCTION LIFE L.E.
EXTENSION AVERAGE
15 0.88 12.47 2
) 16 0.77 22.63 2
17 0.51 49.48 10 4
18 0.48 51.52 11
15 0.88 12.27 2
2 16 .79 21.35 2 4
17 0.58 42.49 6
18 0.55 45.44 7°
15 0.73 26.82 3
16 0.72 27.92 3 s
3 17 0.55 45.21 7
18 0.55 45.44 7
15 0.83 16.84 2
16 0.89 10.58 1 )
4 17 0.91 9.46 1
18 0.86 14.13 2
15 0.62 37.63 5
S 16 0.64 38.60 5
17 0.58 42.36 6 7
18 0.43 57.45 17
15 0.48 51.58 11
16 0.47 52.55 12
6 17 0.35 65.03 33 26
18 0.25 75.08 101 -
15 0.52 48.02 9
16 0.52 47.81 9 13
7 17 0.44 55.70 15
18 0.39 " 60.64 22
15 0.27 72.57 74
8 16 0.24 . 76.00 115
17 0.62 38.14 6 34
18 0.36 65.16 33
15 0.27 72.57 74
9 16 0.46 53.60 13
17 0.78 22.11 2 21
18 0.26 74.06 89
15 0.17 83.38 388
10 16 0.28 72.00 69
17 0.54 46.16 8 75
18 0.22 78.06 154

87

Test Result for Damping

Configuration

Figure AlS.
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